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Purpose. Single dose pharmacokinetic data from several individuals
can be used to predict the fraction of the population that is expected
to be within a therapeutic range. Without having some measure of its
reliability, however, that prediction is only likely to marginally influ-
ence critical drug development decision making. The system (Fore-
caster) described generates an approximate prediction interval that
contains the original prediction and where, for example, the probability
is approximately 85% that a similar prediction from a new set of data
will also be within the range. The goal is to validate that the system
functions as designed.

Methods. The strategy requires having a Surrogate Population (SP),
which is a large number (=1500) of hypothetical individuals each
represented by set of model parameter values having unique attributes.
The SP is generated so that a sample taken from it will give data that
is statistically indistinguishable from the available experimental data.
The automated method for building the SP is described.

Results. Validation studies using 300 independent samples document
that for this example the SP can be used to make useful predictions,
and that the approximate prediction interval functions as designed.
Conclusions. For the boundary conditions and assumptions specified,
the Forecaster can make valid predictions of pharmacokinetic-based
population targets that without a SP would not be possible. Finally,
the approximate prediction interval does provide a useful measure of
prediction reliability.

KEY WORDS: pharmacometrics; pharmacokinetics; simulate; pre-
dict; validate; clinical trial; population; decision support; informatics;
bootstrap; clinical outcomes; algorithm.

INTRODUCTION

There is a need for expert decision support systems that
are designed to increase the efficiency and productivity of the
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clinical phase of drug development. They will allow investiga-
tors to identify successful and unsuccessful drug candidates
earlier in the process by making optimum use of accumulated
pharmacokinetic (PK) and pharmacodynamic (PD) knowledge.
They will deterministically link knowledge from the molecular
to the population level. The core of such systems will need to
be a knowledge-based representation of a real population.
Toward that end, assume that a core database is structured to
represent a Surrogate .Population of hypothetical subjects,
where each is characterized by unique attributes and is capable
of providing PK and PD data of the same type that is collected
during clinical trials. To illustrate its function, assume that some
PK, PD and covariate data are available from a random sample
of n individuals (taken from the “real” population). For the
same independent variable settings, the same type of data is
obtained from m (m = n) randomly selected surrogate subjects.
The two data sets are then scrutinized for significant distinguish-
ing characteristics. None are found, either in terms of mean
results, the variability within and between subjects, the time
course for relevant observations (drug plasma levels, measures
of response, etc.), or the relationship between the experimental
results, prior knowledge and relevant covariates. The two data
sets are statistically indistinguishable. It follows that the Surro-
gate Population (SP) may, within limits, prove to be a valuable
decision support resource to predict how the real population is
expected to respond. For example, subjects from the SP can
be used to simulate the results of candidate clinical trial designs
with the aim of selecting the most optimum. One could use the
results to evaluate projected therapeutic population targets of
the type: The fraction F of the population that should exhibit
a significant therapeutic effect for a specified dose, formulation,
regimen, etc. is F = (.85, whereas the fraction having an
undesired side effect is F' = 0.05.

We recently described the design and demonstrated the
use of a prototype system (1), the Forecaster, that defines and
generates SPs. The Forecaster uses individualized PK/PD model
parameter estimates plus covariate data as input variates for
a stochastic modeling protocol. It generates unique, smooth,
empirical multivariate densities that are intended to reasonably
simulate observed interindividual variability, but should not be
confused with the classical population based PK/PD approaches
(2,3). The Forecaster is designed to extract as much information
as possible out of the available data, and to evolve to deliver
additional specific capabilities. One key capability is that pre-
dictions are accompanied by a measure of their reliability. The
objective of this study is to validate this reliability measure for
predictions of PK-based population targets. Having a prediction
reliability measure allows one to access the benefits of decision
analysis (4).

Clearly, the value and utility of such a system can only
be judged following several rounds of rigorous scientific testing
and validation (5,6). A pivotal part of this process will be to
use existing early clinical trial data to predict later existing data
for a specific drug. First, however, it is necessary to confirm
that the prototype functions at the PK level as designed. Rather
than the typical population mean result, we aim to predict the

Simulated experimental drug level; €, Random error with an expected
value of zero.
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fraction of a population that is expected to have drug level
values within a therapeutic range at steady state, which is our
population target. We use known data to generate the SP. It is
then used to predict each population target value. To gain a
measure of reliability of that prediction we bracket it with a
approximate prediction interval (APT). The APl is a “confidence
interval” such that, under ideal conditions, the probability is
approximately 85% (say) that the actual population target value
is contained therein. We then repeat the entire process 300
times, and by demonstrating that the API actually captures the
population target value approximately 85% of the time we show
that the Forecaster can make valid PK-based predictions.

METHODS

The Validation Strategy

This is the first in a series of exercises that will focus on
the SP approach (Fig. 1) to forecasting. Here we consider only
PK data. In subsequent reports we will expand the exercise to
PK and PD data, and later will include covariate data. We
follow the two part validation strategy outlined in Fig. 2, which
is based in part on the decision support system testing and
validation plan developed by Sailors, et al. (5). As input the
Forecaster needs a set of fitted PK parameter values. One also
needs the prediction question(s) and specified independent vari-
able conditions (Fig. 2). Harrell, et al. (6) discuss that the
predictive accuracy of systems should be validated using a
bootstrap resampling protocol. Such a protocol is a key compo-
nent of both Forecaster (Fig. 1B) and of Part II of the strategy.
Consequently, the output of many different decision pathways
are repetitively tested during each part of the validation process.

The Reference Standard

A large set of data is needed to serve as a reference stan-
dard. In this case PK parameter estimates from several hundred
individuals would be needed. Because no such data set is avail-
able, one must be generated, but it should be sufficiently realistic
to challenge both the Forecaster and the validation strategy. To
build the reference standard we used actual experimental PK
data as a template. That data (1) was collected as part of a
classical corporate Phase II clinical trial; the development team
fit the data to a classical two-compartment, open model with
first order absorption commencing after an individual lag-time.
Mean parameter estimates and coefficients of variation (CV, as
%) for 22 individuals were V: 4.1 (25%) liters; ko;: 6.0 (77%)
hr!; kit 0.09 (22%) hr!; kyp: 0.35 (83%) hr™!; ky: 0.36
(64%) hr™'; and tiag: 0.19 (37%) hrs. Based on prior knowledge
a bioavailability of F = 1.0 could be assumed.

The details for generating our reference standard are given
in the Appendix. Briefly, to add realistic structured interindivid-
ual variability we imposed correlation between three parameter
pairs, kg vs V, kj» vs kig and k,; vs k;,. The other three
parameters were specified to be independent and the frequency
distribution for each was selected at random from Fig. 3. We
then generated 1500 “reference” PK parameter sets (Fig. 2A)
such that their summary statistics were approximately the same
as those above. We used each set to generate single dose drug
level data and then added random error to each value. The
result is 1500 sets of reference experimental drug level data.
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We fit each set to the same PK model used for the template
data. These 1500 fitted parameter sets represent an infinitely
large Reference Experimental Population (REP) and they serve
as our reference standard in Part IT.

Fitted PK parameter estimates obtained from some drug
level data can be unreliable, and some predicted dependent
variable output can be invalid (7-10). Based on the simulations
of Laskarzewski, et al. (11) and the recent research of Purves
(9), there is a risk that some parameter sets within the REP
will contain invalid parameter estimates. In part to help assess
the degree to which this may occur, we selected population
targets during oscillatory steady state (OSS), rather than follow-
ing a single oral dose, the condition for the reference experimen-
tal drug levels.
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Fig. 1. Forecaster Function. In Stage 1 the Forecaster takes fitted model
parameter estimates and follows a protocol (Appendix) to generate and
accept a Surrogate Population. In Stage 2 the Forecaster uses the SP
to make predictions and calculate an approximate prediction interval
(APT) for that prediction.
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Fig. 2. Validation Strategy. Part [: A schematic representation of the
strategy used to generate the Reference Experimental Population, which
serves as the reference standard for the validation. In Part I an experi-
mental test sample of n = 30 parameter sets is taken at random from
the REP and processed by the Forecaster (Fig. 1); that process is then
repeated 300 times. OSS: oscillatory steady state.

The Forecaster and the Surrogate Population

The first step in Part IT (Fig. 2B) is to obtain a test sample.
Ifitis too small, e.g., 5, it will contain essentially no information
on interindividual variability. If it is large, e.g., 200, the reliabil-
ity of a prediction may be acceptable, whereas the probability
of actually getting such a large sample may be so small that
there is little practical interest in a resulting validation. Here
we use the 30-member test sample described in Table I1. Hereaf-
ter that will be the size of all test samples unless specified
otherwise.

During Stage 1 the Forecaster automatically evaluates the
test sample and completes a unique characterization of the PK
parameter space that does not require an assumption of normal-
ity or log-normality for parameter distributions. It then creates
a table of at least 1500 random sets taken from the SP. All
subsequent reference to a SP is referring these 1500 sets. A
strength of this approach is that even if a given parameter set
in the test sample is a poor predictor for that individual, it is
likely be quite adequate for another individual in the population.
Therefore, absent other information, all test sample sets are
weighted equally. This concludes Part I.

The prototype design stipulates that all SPs that meet the
criteria (below) will be multivariate distributions where each
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Fig. 3. Menu Options For Density Functions. To facilitate compari-
sons, the density function options listed in Table 1 are shown. Each
option, with the exception of the Lognormal, is generated from a beta
function, and in its menu form has limits of 0 and 1. The areas shown
are the same.

of p random variates is a PK/PD model parameter (or a covari-
ate). The parameter values for one individual form one p-
dimensional vector. We note that all distributions of interest
can be generated using the conditional distribution approach
(12). The beauty of this approach is that it reduces the task of
generating a hypothetical p-dimensional distribution into a
series of easily managed univariate generation tasks. We utilize
the menus in Fig. 1 to manage univariate generation. Presume
that 8 = (B, B2, . . ., B,) represents a p-dimensional vector of
interest, where 3,, for example, represents all values of the PK
volume of distribution. The conditional approach involves the
following steps.

1. Generate a value §, = B, from the marginal distribution

of Bh Tr(Bl)

Table I. Regression Function Menus Used to Characterize Surrogate
Populations

Menu item k Regression functions®

1 h[(klt) = (lkl* + b

2 hy(kps) = a(k;a)? + bkye + ¢
3 Iykys) = a + bk;)™!

4 hy(kis) = (akys + 5)7!

5 log hs(ky») = ak;» + b

6 he(kix) = av/kys + b

7 ho(k») = a(log k) + b

8 hg(kys) = a(k;)?

10 ho(k;+) = User Defined

2 One is used to characterize each conditional distribution (see text).
All parameter values are positive, and E[k./k,+] = h.(k;+), where k;«
is the parameter that is correlated with k;, k = 1 to 6.
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Table IL. Descriptive Statistics for the Experimental Test Sample

PK parameter

V, liters Koy, hrs™! Kig, hrs™! Ky, hrs™! k;;, hrs™! tiags IS
Mean® 4.1 6.3 0.097 0.50 0.51 0.19
Std. Dev. 0.989 2.74 0.030 0.454 0.456 0.058
Variance 0.977 7.49 0.009 0.206 0.208 0.0034
CV (%) 24.1 434 30.8 90.9 89.0 30.6
Skewness -0.70 0.38 1.04 1.02 0.92 0.47
Percentile
10 2.9 2.4 0.066 0.06 0.07 0.12
50 42 6.1 0.093 0.37 0.37 0.20
90 53 9.9 0.134 1.15 1.13 0.26

¢ For 30 PK parameter sets taken at random from the REP (Reference Experimental Population) and used by the Forecaster to generate the SP.

2. Generate a value 3, = B, from the conditional distribu-
tion of B, given a value of B, w(B,!B)).

3. Generate a value 3; = B3 from the conditional distribu-
tion of B3 given a value of B, and a value of B,; and so forth
through p steps.

We note that most PK/PD data of interest will have rather
large interindividual variances. Also, the distribution character-
istics of a majority of PK/PD data will represent a small subset
of all distribution characteristics. Therefore, we argue that the
above tasks can be easily managed using menus having a limited
number of choices. Upon completion of the automated process
one has the unique characterization of the PK parameter space
that is needed. For details see the Appendix.

Three criteria are satisfied before a SP is accepted. First,
random samples of =30 PK parameter sets from the SP are
statistically indistinguishable from the test sample for all model
PK parameters. Second, expected drug levels from the SP will
be similarly statistically indistinguishable from the reference
experimental drug levels. Finally, for a specific sampling time,
the range of drug levels predicted from the SP will include,
preferably, all of the reference experimental drug levels, and
will have a mean and variance similar to these values. All
such testing can be done automatically as part of Forecaster
background activity. Once these three criteria have been met,
then the SP is accepted as a reasonable substitute for the REP,
and Stage 1 is complete.

A Population Target

For validation we prefer a population target that is expected
to capture 50 * 30% of all values. After inspecting the results
from several individual simulations, a range of 40-70 pg/ml
plasma was arbitrarily selected to represent the therapeutic drug
level range. The population target is therefore the fraction of
the population that is within that range. Three times of interest
were selected: 1, 3 and 6 hours after a dose at oscillatory steady
state (OSS). We determined that OSS would be reached for all
individuals by the 25" dose. Thus, we focused on drug levels
obtained following the 30% dose. The fraction within the thera-
peutic range at the three times was calculated. Early in Stage
2 the Forecaster uses the SP, follows the above procedure and
predicts a value for the population target at each of the three
times.

The Approximate Prediction Interval

If one obtained a new test sample, repeated the above
steps to obtain a new population target prediction, and repeated
the entire process many times, then one would have sufficient
data to.calculate a confidence interval that measures the preci-
sion for the original population target prediction. The Forecaster
uses a bootstrap resampling strategy (13) to mimic this sequence
and to construct an approximate “confidence interval” for the
above population target predictions (Fig. 1B). To avoid confu-
sion with the traditional use of confidence interval, we refer to
the interval described below as an API. Approximate is used
as an adjective because the SP is not intended to replicate
the true population. Any API, e.g., 50, 80, 95%, etc. may be
calculated. For this validation, all APIs are 85%. We specify
a low and high value for the population target such that, under
ideal conditions, these values bracket the actual value for the
REP approximately 85% of the time. To calculate an API, the
experimental test sample can be resampled—bootstrapped—
with replacement to give alias test samples (some sets are likely
to be repeated). Alternatively, the SP can be resampled without
replacement. In either case each bootstrapped sample is evalu-
ated by the Forecaster, with no pre-conditions, as if it is a new
test sample. We use the latter approach in this paper.

To specify an 85% API, 200 alias test samples are obtained
from the SP. Each is analyzed separately by the Forecaster to
give 200 alias SPs, and the latter are used to estimate a unique
value of the population target. The estimates are rank-ordered,
and the highest and lowest values are discarded such that the
smallest interval containing 85% of the 200 is specified, thus
completing Stage 2. Ideally (14), the lowest and highest 15
values are discarded. The 170 remaining values form the 85%
APIL. The value of the population target calculated using the
original experimental test sample will be within this range.
Clearly, the actual population target value for the REP is also
expected to be within the range.

An API will be more precise when the number of boot-
straps is larger. Ideally, one would pool data from a thousand
or more bootstraps to determine the API. Several independent
test samples were evaluated by the Forecaster and then boot-
strapped up to 600 times. We decided to terminate the bootstrap
process once an API value decreased by <2% of the preceding
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value. From the results we established that 200 would be an
adequate number of bootstraps for this validation.

The Final Validation Task

To successfully complete the validation process it is neces-
sary to answer a final question: Upon independent analysis of
additional test samples (e.g., a total of 300), does one get an
85% API range that includes the known value of the REP
population target, approximately 85% of the time? Each of 300
test samples (Fig. 2B) were taken from the REP and separately
processed by the Forecaster. Each time a sample-specific SP
was generated, a population target was calculated, and each SP
was bootstrapped 200 times. Finally, 300 test sample-specitic
85% APIs were specified. The information thus generated was
sufficient to answer the final validation question and complete
Part II. On average, and in the absence of bias, an 85% API
is expected to include the true value for approximately 85 out
of 100 identical size, independent random test samples taken
from the REP. Although the SP represents the REP, its character-
istics, in terms of Table I relationships, are not intended to be
identical to those of the REP. They will be different. Thus, an
85% API can not capture the population target for the REP
exactly 85% of the time. How much flexibility to allow for
validation purposes is difficult to say given the absence of
experience with such systems. We therefore arbitrarily decided
that an API that captures the REP between 82 and 88% of the
time will be acceptable.

RESULTS

The “Reference” Data Set

The population characteristics of the 1500-member “Refer-
ence” data set (Fig. 4) clearly reflect the actual PK data that
served as template. The specified correlation between three
pairs of parameters gave rise to significant, indirect correlation
between three additional pairs of parameters (Table III). To
provide OSS reference data each set of parameter values was
used to calculate plasma levels at 1, 3 and 6 hours after dosing
at OSS for the above dose regimen. The summary statistics of
that data are listed in Table IV.

The REP serves only as a realistic reference standard for
the validation, and is not expected to exactly match or reproduce
the characteristics of the “Reference” data. A comparison
between the population characteristics of a PK parameter in
the “Reference” data set with its counterpart in the REP (Figs.
4 and 5) reveals differences and similarities. An expected differ-
ence is the slightly larger range for parameters in the REP. The
correlations within the “Reference” data set are also present in
the REP (Table III). In addition, a significant correlation exists
between kg, and four other parameters, within the REP, whereas
no such correlation exists within the “Reference” data set. It
presumably results from a combination of the added individual
PK uncertainty (see Appendix), the nature of the PK model,
the choice of sampling times, and the fitting methodology.
These factors cause an increase in parameter variance within
the REP, except ty,,, relative to that within the “Reference” data
set. As is evident in Fig. 5 for kj» vs ky, there is also an
increase in the conditional variance for correlated parameter
pairs from the REP relative to the “Reference” data set. Even
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Fig. 4. Parameter Values. The unshaded bars and whiskers (left) char-
acterize each of the six PK model parameters across the “Reference”
data set. The lightly shaded bars and whiskers (middle) characterize
each pararmeter within the REP. The unshaded bars and whiskers at
right characterize each parameter within the SP. A cross marks each
mean. @: Either an upper or lower limit for all 1500 values. Some
scales are logarithmic.

though such differences were seen when comparing parameter
sets, it is particularly noteworthy that they were not evident in
the corresponding sets of plasma levels at OSS (Table IV).

The Surrogate Population

Table II summarizes the experimental fest sample. The
Forecaster suggested that this data could have come from a
probability density function (see Appendix) specified by Eq.
1, where 8 is the vector of all parameter sets. The subscript s
denotes that the function represents a SP.

p(0), = (V) - m(koiV) - w(kolV) + wikizlkyo)
- m(kaki2) - mW(lag) N

The parameters V and t,,, were judged independent. Therefore,
the values of V in Table II could represent a random sample
taken from a marginal univariate density, m(V). “Normal” was
selected from Fig. 3 to represent m(V) and “slightly skewed to
larger values” was selected to represent m(ty,g). There are four
conditional terms. As an example, m(ko;|V) is the conditional
density function for kg, given a value of V. The Forecaster
suggested that the Table II values could represent a random
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Table III. Correlation® Between Parameter Pairs Within Populations

Parameter” \" ko kio ki; ky,
ko <0.0001°
0.0033
none
Ko <0.0001 <0.0001¢
<0.0001 <0.0001
<0.0001 none
ki» <0.0001¢ <0.0001¢ <0.0001
<0.0001 <0.0001 <0.0001
<0.0001¢ none <0.0001
ko <0.0001 <0.0001¢4 <0.0001¢ <0.0001
<0.0001 <0.0001 <0.0001  <0.0001
<0.0001 none <0.00014 <0.0001
tag none none none none none

¢ The Kendall Rank Correlation test is used to test for correlation
between parameter pairs within a data set.

& Within a cell the correlation values given, from top to bottom, corre-
spond to the SP, the Reference Experimental Population, and the
“Reference” data set. A correlation is treated as real when p < (.05,
and in these cases the p value is given. Otherwise no correlation
(none) is assumed.

¢ Units are as in Table II.

4 The observed correlation between this pair of parameters is the result
of indirect correlation.

sample taken from (kg | V). The Forecaster used Table I menu
choices to characterize each of the six terms in Eq. 1 such that
a random sample of 100 from the selected form of a term had
a mean and variance that were as close as possible to the
corresponding values in the test sample. The Table I regression
function choices were k = 4, 6, 3 and 2 for the second through
fifth terms, respectively, in Eq. 1. The conditional variance
choices were “proportional to predicted,” for the second, fourth
and fifth terms, and “constant” for the third term. The condi-
tional density function choices were k = 3 for (kg 1V), k =
8 for w(k,olV), k = 4 for w(k;;lkg), and k = 6 for 7w(ky, k;,).
Subsequently, it is this fully characterized form of Eq. 1 that
is specified when we cite Eq. 1.

Table IV, Descriptive Statistics for the 1500 Drug Plasma Levels at
Three Times After Dosing at Oscillatory Steady State (OSS)

Std. Percentile
Mean Dev. CV(%) 1 10 50 9 99
1 hour
Surrogate 68.1 13.7 20.1 40.6 509 67.0 86.7 101.4
REP* 71.1 13.3 18.8 393 539 71.6 90.6 99.2
“Reference”™ 70.8 13.1 18.6 423 539 70.9 88.5 100.5
3 hours
Surrogate 53.4 11.9 223 292 384 527 69.6 793
REP 56.3 11.1 19.6 315 418 574 71.8 78.6
“Reference” 534 11.9 222 329 383 527 695 79.8
6 hours
Surrogate 442 9.9 22.3 239 32.1 43.6 578 659
REP 46.1 9.1 19.8 25.9 34.3 47.1 59.1 64,7
“Reference” 46.0 8.9 19.3 269 342 46.2 579 66.3

2 The Reference Experimental Population.
® The “Reference” Population.
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Fig. 5. Correlated Parameter Values. The correlation reported in Table
HI between different pairs of parameters is illustrated for k;, and k.
The open circles are paired values from the 30-member test sample
(Table II).

A set of parameter values to represent one hypothetical
individual is assembled by randomly sampling one value from
each term in Eq. 1 in sequence from left to right. In this way
we assembled 1500 sets to represent the SP. The expectation
is that test samples taken from the SP and the REP will be
statistically indistinguishable (Smirnov test, p > 0.05). Indeed
each of 100 random (alternate) test samples from Eq. 1 met
that condition (not shown). Also, significant relationships were
present within the SP for the same nine correlated pairs that
were identified within the REP (Table III). Four of these pairs
are specified by Eq. 1. The other five are the result of indirect
correlations. In some cases the pattern of the relationship within
a parameter pair is visibly different between the SP and the
REP. As an example, contrast the relationship between k;, and
ko in Fig. 5 within the SP and the REP. Although differences
are evident at the two dimensional level, because of the large
interindividual variance, test samples taken from each popula-
tion are statistically indistinguishable (Smirnov test, p > 0.05).
Very large samples will, however, be distinguishable.

Drug plasma levels at 1, 3 and 6 hours after dosing at
0SS were predicted using the SP, and in Fig. 6 are contrasted
to the values calculated from the REP. The descriptive statistics
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Fig. 6. Drug Level Frequency Distributions. Each curve is a smoothed
frequency distribution of 1500 drug plasma levels (2.5 pg/ml intervals)
calculated for the conditions specified in the text for the REP and the
SP at 1, 3 and 6 hours after dosing at OSS. The rectangle indicates
the population target (therapeutic range).

80

are in Table IV. Clearly, the SP makes a reasonable substitute
for the REP in terms of providing projected drug levels across
the population, even at OSS where the independent variable
settings are different from those under which the original data
was collected. At one hour 56% of the REP is predicted to be
within the therapeutic range, whereas the actual value is 45%.
Similarly, three hours after dosing 77% is predicted to be within
the therapeutic range, whereas the actual value is 78%. At six
hours, 64% is predicted; the actual value of is 73%. How
reliable—how accurate—are these predictions?

To obtain a measure of reliability 200 alias population
target values were calculated. The 15 smallest and largest values
were discarded. The remaining values formed the 85% APL
At one hour after dosing between 41 and 59% of the REP is
predicted to be within the therapeutic range with a probability
of approximately 85% of being correct (15% of being wrong);
the actual value is 45%. At three hours between 70 and 84%
is predicted to be within the therapeutic range, whereas the
actual value is 78%. Finally, at six hours between 60 and 76%
is predicted to be within the therapeutic range, and the actual
value is 73%.
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Fig. 7. Approximate Prediction Intervals. Each horizontal bar gives
an 85% API for the percent of the REP that is expected to be within
the therapeutic range, 40-70 pg/ml, for the conditions specified in the
text. Each API is calculated for a SP that was independently generated
by the Forecaster when given one of 300 independent 30-member test
samples taken randomly from the REP (Fig. 2B); 50 of these, selected
arbitrarily, are shown ordered by median value. The vertical bar marks
the actual population target value for the REP, 78% (specifically,
77.9%). O: The midpoint of each API that captures the REP target
value. @: The midpoint of each APT’s that falls to capture the REP
target value. 84.0% of the 300 API (252) captured the population target
value in the REP. The bar and whiskers at the top designate the mean
of 300 API medians *1 and 2 SD. Of the 300 API's the one that
missed most on the low side was the interval 49 to 67%, and the one
that missed most on the high side was 90 to 99%.

Validation of Predictions

How frequently will an 85% API capture the actual per-
centage of the REP that is within the therapeutic range? To
answer this question 300 experimental test samples from the
REP were separately used to calculate an 85% API for the
population target at 3 hours after dosing at OSS. Of these
252—84%—captured the actual known population target value
of 78%. Fifty, selected at random, of these API are represented
in Fig. 7. For a 95% API, the intervals in Fig. 7 will be wider.
This completes Part IT and successfully concludes the validation.

DISCUSSION

The Validation

For the boundary conditions and assumptions specified,
the prototype Forecaster makes useful population predictions,
and the API functions as designed by providing a useful measure
of prediction reliability. The results support the proposition that
the hypothetical individuals that comprise a SP can be used to
predict clinical trial outcomes and to answer a variety of “what
if” questions. Clearly, further testing and validation is needed,
especially using population targets that are PD-based, and they
are in-progress. Extension of this approach to include PD and
covariate data may allow one to forecast results with limited
or non-existent current data.
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The Surrogate Population Approach

Among other things, a SP provides a useful representation
of the interindividual variance structure of a population, and
therefore can provide a valued resource. One could use it to
address sample size questions, to query the merits (for example)
of shifting to a sustained release dosage form or to an alternate
route of delivery, and of using optional clinical trial designs.
It provides the means to bring into sharper focus both what is
known and what remains unknown (15). The expectation is
that a SP can be used to increase the probability that, during
the clinical phase of drug development, primarily the pivotal
and supportive studies will be conducted. Arguments have
already been made that when this is done, drug development
will be concluded sooner, and at a lower cost (16-19).

To have sufficient flexibility to address development
research issues, our approach is that the SP needs to allow
generation of the individual output data that provides the basis
for decision making. In designing the prototype around the
conditional distribution approach (12) we hypothesized that
there is now sufficient knowledge so that one can adequately
represent interindividual relationships between inter-related
variates across a population using selections made from a lim-
ited number of options (e.g., Table I). Because data from humans
can have large variances, we can reduce the number of menu
options to a manageable number. The number of menus, the
number of options within each and the exact options used are
open issues. The characterization of the SP, such as that given
by Eq. 1, is not intended to be the an optimum or most likely
representation of the actual characteristics of an experimental
population. That is not our objective.

A successful and useful drug development decision support
system will generate predictions for different decision paths
that can be weighed against each other. Providing a prediction
in the form of an approximate prediction interval (API), rather
than an expected population mean drug level or response value,
provides the needed weight, and so will be more useful in a
critical decision context (4).

Flexibility and Prior Knowledge

Success in meeting the stated validation challenge derives
from system flexibility and use of prior knowledge. Prior knowl-
edge from five sources is added to the experimental data. First
is knowledge that supports the assumption that the marginal
distribution for each model parameter is smooth and adequately
representable by one of the Fig. 3 functions. These functions
add tails to the experimental data. Next, is the knowledge that
all biologically realistic parameter values lie in the positive
quadrant of all possible values. Third, significant apparent cor-
relation between parameter pairs in a test sample is taken to
be real and so additional information is added by deciding that
a Table I function can adequately represent the relationship.
Fourth is the knowledge that all clinically relevant PK/PD
parameters and covariates will have finite limits. Finally, the
conditional variance for a correlated parameter pair is ade-
quately represented by one of three options. Adding such infor-
mation is supported by the large PK and PD literature that has
accumulated over the past three decades. Unusual cases and
exceptions are known, however. There is clearly a risk that
some portion of this added information will be inappropriate
for the case at hand. Therefore, seeking evidence that might
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contradict a questionable assumption can be included among
the experimental design objectives.

Forecaster flexibility is also a consequence of how we
have implemented the conditional distribution approach. A
description of a six dimensional parameter space can take many
forms. Equation 1 is just one of 720 (6!) possible combinations
of marginal and/or bivariate conditional terms that were actually
considered before Eq. 1 was specified. During Stage 2, any
one bootstrapped sample may be represented by any one of
these 720 different versions of the population joint density
function. In fact, many of these versions were actually selected
and then used in the process of constructing 300 85% API
(Fig. 7).

Flexibility also comes from having a finite menu of options
to represent each term in Eq. 1. A marginal term, such as mw(V),
will be represented by one of nine different density functions,
yet each of these will have the same mean and variance. Their
distribution patterns and ranges will differ. Each conditional
distribution will also be represented by one of these nine func-
tions. In addition there are three conditional variance options,
and the regression relationship will take any one of eight forms.
Thus, each of the four conditional terms in Eq. 1 (as written)
can be represented in one of 9 - 8 - 3 = 216 different ways.
It follows that Eq. 1 can take any one of (2 - 9 + 4 - 216)
= 882 different characterizations. For the same independent
variable conditions, the range and pattern of drug levels across
the population that are predicted from several of the 882 charac-
terizations can be quite different, even though there may be
little difference in the predicted population mean levels.

The approach needs deterministic models but is flexible
about their nature. Equation 1 can be based on any of a variety
of model types where model parameter values are independently
obtained for, and assigned to, an individual. We used a classical
compartmental model (7,20) because that was the approach
selected by the team that produced the template data. Alterna-
tively, one can use a noncompartmental approach or physiologi-
cal PK models (21), or even an infrequently used modeling
approach (e.g., 22-24). Equation 1 can be easily extended to
include PD model parameters and concomitant variables, either
discrete or continuous.

Forecaster Reliability

Is the API 85% as stipulated? Is an assessment using 300
test samples sufficient to answer the question? The answer
depends on the level of accuracy sought and on the stringency
of the criteria used. The 85% API is intended to provide a
measure of reliability for a single population target forecast,
presumably at a time when actual development targets are being
set. Therefore, for this validation we aimed only to confirm
that the prediction interval is approximately 85%. We specified
that having the known population target value fall within the
API between 82 and 88% of the time (246 to 264 times out of
300) would be acceptable. Having an accuracy of 85 % 5%
may also be acceptable. As the SP approach evolves, the issues
of API width and accuracy will need more research. Forecaster
design and the validation strategy are built upon numerous
assumptions that are supported by several literature sources. It
follows that the accuracy of an API may be as dependent on the
appropriateness of these built-in assumptions as on Forecaster
sample sizes, or the exact characterization selected for the SP.
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Questions

Taken together the test results provide the feasibility sup-
port sought. Additional research, however, is needed to establish
the strengths and weaknesses of the SP approach. Caution is
also needed. Even though the REP is realistic and based on
real data, it had to be generated. Validation is still needed that
uses existing early PK/PD data to predict later (also existing)
PK/PD data.

Both the testing and the results raise many interesting
questions. What constitutes adequate testing and validation for
such a complex decision support system? Have the validation
criteria and plan been sufficiently exacting? What is the relation-
ship between experimental test sample size and the width of
an API? Within the context of drug development, is an 85%
API appropriate or too demanding? Are other API, 80% or
90%, also reasonable? To generate the AP], is it better to resam-
ple with replacement from the experimental data or, as done
here, resample without replacement from the SP? Can the Fore-
caster design accommodate missing data and incomplete experi-
mental parameter sets? Most people are better able to understand
complex information when they see it displayed. What is the
best strategy to visualize the important population information
features within a variety of multidimensional clinical outcomes?
These and other questions are being addressed as part of our
ongoing research.

APPENDIX

Generating The Reference Experimental Population

The template data (1) consists of drug plasma levels—not
body weight adjusted—measured at 20 times (0.083 to 48 hours)
following a single 200 mg tablet dose. Individual data were fit
to the model using PCNonlin (SCI, Cary, NC) assuming a
Poisson error model with a positive parameter constraint. Had
the team fit the original data to a physiologic PK model (21),
the Forecaster strategy would have been unaltered, but Eq. 1
would be different.

The template data is used to generate a reference standard
assuming that each PK parameter comes from a population
characterized by a smooth, unimodal, distribution. When corre-
lations are seen (real or apparent), we assume that the relation-
ship is continuous in the parameter ranges of interest, and that
the actual underlying relationship can be represented by one
of several regression functions, such as in Table I. There is
no compelling reason to assume that the variance about the
regression is constant or that the residuals are normally distrib-
uted. To allow for many of the varied relationships reported in
the literature, we assume that the conditional distribution of
one parameter, given a value of another, can be reasonably
represented by one of several density functions, such as in Fig. 3.

Desiring a realistic reference standard, we arbitrarily speci-
fied that three significant correlations should exist, as detailed
below, and that the remaining three parameters, V, kg, and ty,,,
would be independent. In the latter three cases, a density func-
tion was selected at random from Fig. 3 to describe each. The
density function selected for V was scaled such that the mean
and variance of 100 random values taken from it were identical
to the corresponding template data values. We repeated this
procedure for kg, and for t,,,. For each pair of correlated parame-
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ters we arbitrarily specified a regression function form Table
I to represent the relationship. We randomly selected a Fig. 3
option to represent the conditional distribution. The conditional
variance was specified to be either constant or proportional to
the expected parameter value. Using k;, given a value of V,
(k10! V), as an example, we adjusted these three properties of
the relationship until the mean and variance of 100 values of
ko taken at random from the adjusted conditional density of
(ko V) were as close as the constraints allowed to both the
mean and variance of the ko template data. The same protocol
was followed for (kj;lk,g) and finally for (ky,lk;). Thus, a
unique population of PK parameter sets was specified. A single
random sample was then taken from each of these six character-
izations—in sequence—to generate a set of single values of V,
Ko\, tiag, and then kg, k, followed by k;;, and that set represented
the first hypothetical individual in the “Reference” data set.
Additional random samples were taken until the “Reference”
data set (Fig. 2) totaled 1500. The selected Table I and variance
choices remained unknown for the duration of the validation.

Four more steps are needed to get the Reference Experi-
mental Population (REP). First, each “Reference” set is intro-
duced into the PK model at the same independent variable
settings that gave rise to the template data, to generate error-
free drug level data, Cg (20 times, 0.083-48 hours). Random
error, selected at random from a normal density having a 10%
CV (11), is then added separately to each Cg to obtain simulated
experimental drug levels, Cg = Ci + €, where the variance of
€ is proportional to Cg. Using the WinNonlin 1.1 (SCI, Cary,
NC) Gauss-Newton weighted least squares fitting algorithm
(20) we fit each set of C to the PK model. To minimize the
type of post-fitting problems discussed by Purves (10) we added
the constraint that all parameter estimates be within the follow-
ing range limits: V: 1-10 liters; ko;: 0.1-10 hr™%; ko: 0.03-0.3
hr™!; kyp: 0.02-3.0 hr ™' kyp: 0.02-3.0 hr™"; and ty,y: < 0.5 hrs.

Forecaster Design and Execution

The development and explanation of the Forecaster
detailed in (1) is summarized here. Presume that each of n sets
of experimental data have been individually and adequately fit
to a common PK model and to a corresponding common PD
model, Eq. 2.

E[C] = fi(x, 6) and E[E] = fy(x, 6) @

The function f, describes a PK model of the type specified in
Methods; the function f, describes the drug’s pharmacodynam-
ics at settings of the same independent variables, x, and for the
vector of model parameter values 6. Assume that the uncertainty
in the individual parameter estimates is small relative to the
population variance, and that all model parameters are treated
as random variates. The mathematical and statistical algorithms
needed to characterize 6 come from the IMSL® Math/Library®
and Stat/Library® (Visual Numerics, Inc., Houston, TX). The
Forecaster methodology is programmed as a series of ten steps.

1. Randomly order all p variates within each category
(PK, PD, etc.) and factorize their joint density as a product of
marginal and conditional density functions. Let m(B,) stand for
the marginal distribution of kth variate. Let (BB, B2y - . . »
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B:—1) stand for the conditional distribution of B, k = 2, given
specific values of the other variates.

p(0) = w(By) * w(BIB1) * wW(BalBy, B2) * -
* Tr(Bp'Bb B2 .-, Bp—l) (3)

Presuppose that sufficient prior knowledge is available to nar-
row the range of choices needed to characterize each marginal
and conditional distribution to the 9 univariate density functions
in Fig. 3, the 8 bivariate regression functions in Table I, and
3 conditional variance options.

2. a) Starting with B, select M (here, M = 100) numbers
from a Fig. 3 option and scale them to have the same mean
and a variance as the experimental values. Refer to them as
Bi, where j refers to the density function. Use the Smirnov
test, to compare each Blj with the experimental B;, and refer
to the computed test statistic as a matching index (MI). A MI
approaching 1.0 is preferred. b) Repeat Step 2a for the remaining
density functions, and then select the set with the largest M/
as best representing 3;.

3. Reduce m(BIB1, B2, - - - » Bx—1) to a distribution condi-
tioned on just one other variate, i.e.

T(BelB1, Bas - - - » Bi—1) = T(ByIB, or By or -+
or B_y) = w(BIB ) 4

without loss of generality. Condition 3; on only B, or B, or By,
whichever exhibits the largest correlation with B,. Evaluate
each possible conditional distribution in Eq. 3, in sequence, for
evidence of correlation by calculating a Kendall rank correlation
coefficient for each pair. Disregard any correlation having p
> 0.05 (adjustable). Rank-order the remaining coefficients.
Designate the variate exhibiting the largest correlation with B,
as B~ If no significant correlations are evident then Eq. 4
reduces to m(B,). The general form of Eq. 3 thus becomes Eq. 5.

p(0) = w(B1) * w(B2IBy) * (B3P or Ba) * -
* (BB or B or -+ B, ) (%)

4. Let the expected value of B, given a value of (3« be
E[B:B1x] = h(B+), where h, designates a Table I regres-
sion functions.

5. Assume that the conditional variance for all B, given
B+ is either constant, proportional to (the expected value of)
B, or proportional to BZ. Use prior knowledge or the residuals
generated during Step 4 to select one of these three options.

6. a) Identify one Fig. 3 option to represent m(B.IB;«).
For each value of B simulate a corresponding random value
of By simulate M numbers from a density function and trans-
form them such that they have the conditional mean in Step 4
and the conditional variance in Step 5. Compute the MI between
the experimental and simulated values of B,. b) Repeat Step
6a 20 times and compute an average matching index, AMI.

7. a) For each additional Fig. 3 option repeat Steps 5 and
6. Select the one distribution having the largest AMI as best
representing 3;. b) For an additional conditional term, repeat
Steps 3 through 7a.

8. Repeat steps 5 through 7 for all other variates. Each
of M sets is then introduced into Eq. 2 to yield sets of individual
outcome values. At each time use the Smirnov test to compare
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these M values and the corresponding # experimental values.
If no significant difference is detected, then accept p(8) and
designate it p(8)s. Otherwise return to Step 1.

9. Alarge subset of p(8)sis used to represent the Surrogate
Population. To generate a SP take Z (typically, Z = 1,500)
random samples from p(8)s and introduce each into the outcome
functions of interest, e.g., Eq. 2, and calculate a value of the
population target.

10. To measure the precision or reliability of the popula-
tion target prediction from step 9, select one of two options:
i) the n sets of the experimental test sample are resampled with
replacement (13) and each time Steps 2 through 8 are followed
to obtain an alias description of p(8)s; ii) the SP from step 9
is resampled without replacement, and each time Steps 2 through
8 are followed to obtain an alias description of p(8)s. Then, 1)
or ii) is repeated L times, (e.g., L = 200). Finally, the L density
descriptions are processed according to step 9 to give L alias
values of the population target. Use a procedure to calculate
an approximate 1 — « level equal tail confidence interval (25)
and use it as the Approximate Prediction Interval: it serves as
an indication of the precision and a measure of the reliability
of the population target prediction.

Data Used

All data used for this validation is available from the
corresponding author.
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